品书中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

1882. 一个数学问题通常可以用军事术语中所谓的“系统逼近法”来解决,也就是说,即使无法清晰预见通向答案的各个步骤,也能逐渐摸索出解决方案。但画法几何的问题必须彻底弄明白之后才能着手解决。其所有条件的范围,以及通向答案的每一步,都必须凭借想象力去把握。它必须被“强攻”下来。——G.S.克拉克,引自w.S.霍尔《画法几何》(纽约,1902年),第一章。

数学之题,常可用兵家所谓“渐逼之法”攻之:即虽未明见解题之阶,亦可渐探其解。然画法几何之题,必洞彻而后可试。其诸般条件之全域,及解题之每一步,皆需以想象握之。必“强攻”而得也。——克拉克引于霍尔《画法几何》(纽约,1902年),第一章。

1883. 画法几何的重要用途在于它在工业技艺中的应用——它为数不多的抽象问题,都能得到确定的解答,且本质上与曲面的接触和相交有关。因此,在各种建造技艺(如石工、木工、透视法、日晷制作、筑城术等)中可能出现的所有几何问题,都总能被视为单一理论的简单个别情况,而每种情况的具体条件都能确保得出解决方案。在那些认为人类迄今为止的所有成就都只是朝着对人类劳动进行哲学革新、朝着唯有精确性和逻辑性才能确保所有技艺未来进步的方向迈出第一步的哲学家眼中,这一创造必定极为重要……还可以说,画法几何有效地锻炼了学生的想象力——即构想空间中复杂几何组合的能力;而且,就其解答的性质而言,它属于古代几何学,而就其包含的问题的本质而言,它又接近现代几何学。——奥古斯特·孔德,《实证哲学》[马丁诺译本],第一卷,第三章。

画法几何之大用,在施于工艺:其少量抽象之题,解之有定,实关曲面之接触、相交。故凡营造诸艺(如凿石、木工、透视、造晷、筑城等)所生几何之问,皆可视为一理之特例,各依其情,必可得解。哲人谓人类迄今之成就,不过迈向劳作之哲新、迈向唯精确与逻辑可保百艺进步之始步,此创于彼眼中,必为重。……又可言,画法几何善练学者之想象,使其能构空间中繁复之几何组合;就其解法而言,属古之几何,就其题之本质,则近今之几何。——孔德《实证哲学》[马丁诺译],卷一,第三章。

1884. 或许可以说,在数学中处于中间位置的,莫过于三角学了。——J.F.赫尔巴特,《直观Abc构想》,《着作集》(克尔巴赫编)(朗根萨尔察,1890年),第一卷,第174页。

数学之中,居乎中者,盖三角学也。——赫尔巴特《直观Abc构想》,《着作集》(克尔巴赫编)(朗根萨尔察,1890年),卷一,页一百七十四。

1885. 三角学包含关于持续波动量的学问:所谓波动量,是指交替变大变小,且这种增减过程没有尽头的量……并非所有三角函数都是波动的,但可以说,在普通代数中,只有无穷级数是波动的;而在三角学中,只有无穷级数不是波动的。——奥古斯塔斯·德·摩根,《三角学与双代数》(伦敦,1849年),第一卷,第一章。

三角学含持续起伏量之学:起伏量者,迭为增减,而增减无已……非所有三角函数皆起伏,然可云:寻常代数中,唯无穷级数起伏;三角学中,唯无穷级数不起伏。——德·摩根《三角学与双代数》(伦敦,1849年),卷一,第一章。

1886. 我讨厌sin2φ这种写法,即便拉普拉斯用过它。要是担心sinφ2可能产生歧义(这种情况或许永远不会出现,或者说在提到sin(φ2)时极少出现),那我们就写成(sinφ)2,而不是sin2φ——按照类比,sin2φ本该表示sin(sinφ)。——高斯,《高斯-舒马赫通信集》,第三卷,第292页;第四卷,第63页。

吾恶sin2φ之记,虽拉普拉斯用之。若恐sinφ2有歧义(或永不有,或言sin(φ2)时罕见),则书作(sinφ)2可也,勿作sin2φ——依类,sin2φ当指sin(sinφ)也。——高斯《高斯-舒马赫通信集》,卷三,页二百九十二;卷四,页六十三。

1887. 对学生来说,或许初等数学中没有哪个部分比球面三角学更令人反感了。——p.G.泰特,《不列颠百科全书》第九版,“四元数”条目。

学子眼中,初等数学或无如球面三角学之可厌者。——泰特《不列颠百科全书》第九版,“四元数”条。

1888. “纳皮尔圆部法则”或许是已知的人工记忆法中最巧妙的例子了。——弗洛里安·卡约里,《数学史》(纽约,1897年),第165页。

“纳皮尔圆部法则”,盖为已知人工记忆之妙例。——卡约里《数学史》(纽约,1897年),页一百六十五。

1889. 古人所不知、由笛卡尔首次引入曲线和曲面研究的解析方程,不仅限于图形的性质,也不限于理性力学所研究的那些性质,它们适用于所有现象。没有哪种语言比它更通用、更简洁,更少错误和晦涩,也就是说,更适合表达自然界中不变的关系。——傅里叶,《热的解析理论》,序言。

古人未知、笛卡尔首引入曲线曲面之研之解析方程,不独限于图形之性、理性力学所究之性,实通诸象。无有语言更普、更简、更少误与晦,即更宜表自然中不变之关系者。——傅里叶《热的解析理论》,序言。

1890. 想到人类在某些探索与发现的历史性时刻所怀的激动之情,人们总会心潮澎湃——哥伦布首次望见美洲西海岸时,皮萨罗凝视太平洋时,富兰克林看到风筝线引下电火花时,伽利略第一次将望远镜对准天空时。这种时刻也会降临到抽象思维领域的研究者身上,其中尤为重要的,当属笛卡尔躺在床上发明坐标几何方法的那个清晨。——A.N.怀特海,《数学导论》(纽约,1911年),第122页。

念及古之探险家与发现者于历史性时刻之豪情,不禁心潮澎湃——哥伦布初睹西陆海岸,皮萨罗凝望太平洋,富兰克林见风筝线引电火花,伽利略首以望远镜观天。抽象思域之学子亦有此际,其中尤着者,乃笛卡尔卧榻创坐标几何之晨。——怀特海《数学导论》(纽约,1911年),页一百二十二。

1891. 人们常说,方程中只包含被代入其中的东西。但不难回应:事物所呈现的新形式本身,往往就构成了一项重要发现。更有甚者:分析学仅通过其符号的巧妙运用,就能催生出远超最初范围的概括。——E.皮卡,《美国数学会通报》,第2卷(1905年),第409页。

世人常言:方程之中,唯纳所代之物而已。然不难对曰:物呈新态,其形自显,每成要妙之得。况复有进者:解析之术,但凭符巧,竟能肇启远逾初畴之广推。——皮卡《美国数学会通报》,卷二(1905年),页四百九。

1892. 我们选择何种线条来解决问题,并非由方程的简单性决定,而是由描述的简便性决定。因为表达抛物线的方程比表达圆的方程更简单,但圆因其构造更简便,反而比抛物线更早被认可。——牛顿,《方程的线性构造》;《普遍算术》(伦敦,1769年),第2卷,第468页。

择线解题,非由方程之简繁而定,实以述形之便易为衡。盖抛物线之式虽简于圆,然圆以构形易简,反先得识焉。——牛顿《方程之线性构造》;《普遍算术》(伦敦,1769年),卷二,页四百六十八。

1893. 只有从初等学科过渡到解析几何,数学研究才能充分展现其塑造思维的力量。毫无疑问,最简单的几何与代数已经能让心智习惯于清晰的定量思考,也习惯于只将公理和已证明的内容视为真理。但用曲线或曲面表示函数,却揭示了一个全新的概念世界,并教会人们运用人类心智为提升自身效能所发明的最富有成效的方法之一。维埃特与笛卡尔发现这一方法时为人类带来的东西,如今也会带给每一个在某种程度上有能力理解它的人:一道具有人生里程碑意义的灵光。这一方法植根于人类认知的最深处,因此其意义全然不同于服务于特定目的的巧妙技巧。——埃米尔·杜·布瓦-雷蒙,《演讲集》第一卷(莱比锡,1885年),第287页。

数学之研修,唯自初等而入解析几何,其塑思之力方得尽显。固简浅之几何与代数,已使心智习于精审之量思,亦习于唯信公理与已证者。然以曲线或曲面表函数,却启一新概念之境,示人类心智为增效能所创最丰饶之法。维埃塔与笛卡尔发此法所予人类者,今亦予凡有禀赋者:一划时代之灵光。此法植根于人类认知之深处,其义远非应特定之巧术可比。——布瓦-雷蒙《演讲集》卷一(莱比锡,1885年),页二百八十七。

1894. 《螺旋之歌》

无论是运动的形态还是刚性的物体,

无论处于何种条件,

在每两个位置之间,

都必定沿着连续的螺旋移动。

它一边旋转,一边滑动——

这便是我歌声的主旨。

螺旋的螺距乘以旋转的角度,

就会得出它在平移运动中

必须滑动的距离。

螺距无穷大意味着纯粹的平移,

螺距为零意味着纯粹的旋转。

两个给定螺旋上的运动,

有着任意的幅度,

会融合成第三个螺旋运动,

其幅度可通过

平行四边形法则来度量

(这是一个非常明显的推论)。

它的轴线与那条节线相交,

节线与两个螺旋都垂直,

并生成一种神圣的形态,

其正式名称是

“三次直纹曲面”。

而我名为柱形螺面。

绕给定直线的旋转,

就像沿直线的力,

若你不愿称之为力偶,

那显然是错误的;——

稍加思考便知,

一条直线并非仅仅是一个方向。

力偶与平移也

在各方面都相符;

因此,在螺旋中

凝聚着一种奇妙的和谐,

关乎运动学与静力学——

这是数学中最美妙的事物。

一个螺旋上的力,

与另一个螺旋上的运动,

通常会做一些功,

其大小可通过

角度、力以及我们所谓的

虚系数来计算。

现在将旋转转化为力,

再将力转化为旋转;

我们可以断言,

尽管发生了转化,功却保持不变。

若两个螺旋不做功,

它们就会被称为互反螺旋。

五个数可以定义一个螺旋,

六个数可以定义一个螺旋运动;

因为四个数能确定轴线,

再一个数能确定螺距;

因此,我们总能设法找到

一个与五个螺旋互反的螺旋。

两个、三个、四个或五个螺旋组合起来

(这里不涉及六个),

会产生其他螺旋,这些螺旋

被限定在一个螺旋复形中。

由此,我们能对

运动的自由度与约束获得最清晰的认识。

在第三类复形中,

每个点都有三个不同的螺旋,

若你选定一个方向,

就会有一个螺旋符合你的想法;

而第三阶复形

可以是自身的互反复形。

在第四类复形中,无论你到达何处,

都会发现一个螺旋锥,

在第五类复形的每条直线上,

恰好有一个螺旋;

在这个内容丰富的复形的每个点上,

都有一个给定螺距的螺旋平面。

但我没有时间详述

阶与度;

也无暇谈及冲量、能量、力

以及互反性。

所有这些乃至更多,对于微小运动,

鲍尔博士都已论述过。

——佚名

《螺旋铭》

夫形之动也,刚柔殊态,境遇异方。然凡物移于二位之间,必循螺旋之径。其体也,回旋而进滑——此乃吾歌之要旨也。

螺旋之距,乘其转幅,则得滑行之程。距若无穷,则为直进;距若归零,则为纯旋。

二旋相合,其度任意,乃生第三旋动。其度可度,依平四之法(此理甚明)。其轴交于节线,节线垂于双旋,乃生神圣之形,雅称三折直纹,吾名之曰柱形螺面。

绕定轴而转,犹施力于直。若不以力偶称之,谬矣!——细思之,直线非徒方向而已。力偶与直进,诸般相契;故螺旋之中,蕴动静之妙谐,乃算学至美者也。

一旋之力,与另旋之动,常有所功。其量可计,依角、力及所谓虚系。今化转为力,复化力为转;虽形变而功恒。若二旋无功,则称互反。

五数定一旋,六数定旋动。盖四数以定轴,一数以定距;故恒可求得与五旋互反之旋。

二、三、四、五旋相合(不及于六),生他旋焉,束于复形。由是得明运动之自由与约束。

第三复形,点各有三异旋。择向而行,必得一旋应之;而三阶复形,可为己之互反。

第四复形,行处皆见旋锥。第五复形之直线上,恰得一旋;此丰盈复形之每点,皆有定距旋面。

然吾未暇详阶度之分,亦无暇论冲量、能力、力及互反。凡此种种,至于微动,鲍尔子已述备矣。

——无名氏

品书中文推荐阅读:玄幻:老婆绝世仙子,我却要逃婚绑定变美系统,绿茶在位面杀疯了快穿:挖野菜系统崩溃了四合院:生那么多孩子!怪我咯灵轩心动快穿之疯批反派在线作死快穿:钓系美人穿成黑月光之后开局策反病娇女BOSS的我无敌原神获得造物主系统的诸天之旅傅同学,我知道你暗恋我恶魂觉醒后,全宗门哭着求我原谅太师祖在下,孽徒桀桀桀!穿越年代文:工具人拒绝剧情哼,老娘才不想当什么丘比特火行天下末世向导:四大哨兵争着宠霹出个天尊化神老祖作香童是认真的豪门奶爸开局,养个外挂小奶娃摸一摸就能修仙,还要脸干什么!国运:扮演张麒麟,我是女版小哥真千金驻岛开荒,嫁禁欲军官赢麻神卦狂妃又在撩人了世界与尔青云仙梦张悦的逆袭没错,我哥和我爹都是大佬末日重生:鬼观音她畸变成神抗战:从远征军开始小孕妻齁甜,被绝嗣大佬抱回家宠快穿之云华真君圆满之旅快穿:我家宿主超厉害的,嗷呜盗墓:修仙修到青铜门碎裂掌控被未婚夫送去和亲后,我把他刀了快穿之改变be世界一夜情后,穆总失控刑侦六组全家读我心后杀麻了,我负责吐槽原神:从摸鱼开始出轨爹,爱赌妈,重生我笑呵呵一吻唤醒前世爱人我在古代当开山大王60后婆婆与80后儿媳知否:心狠手辣如兰传!崩铁,从雅利洛开始的星际军阀要命!她马甲满级,你惹她干嘛依靠MC我在古代种田种成了女皇悍女重生:莫少的心尖宠快穿:成了绿茶炮灰女配穿成主角手中宝
品书中文搜藏榜:异兽迷城半相热恋快穿:我在异界客串路人甲家外火影世界的修士开局逃荒,女尊小混子她吃喝不愁和狂野总裁同房后他说我只是陌生人墓虎带着两宝去逃荒,我逃成了首富穿越乱世,我有空间我怕谁秦老六的生活日常奥特次元:羁绊之力全能站姐变爱豆后成顶流了高嫁京圈大佬,渣前任悔疯了!末世,女主她拿百亿物资杀疯了孤独摇滚!属于老兵的孤独!穿越知否之我是墨兰末世,恋爱脑杀了最后一位神性转魔王的异世界冒险绣剑鸣脑叶公司:逐渐离谱的员工我,AI天命无痕仙路漫漫凡人闯仙界离心机爆炸!生物女博穿越五零首辅肥妻有空间小宫女娇软妩媚,一路荣宠成太后后妈恶毒后妈爽,后妈日子过得好陆爷的闪婚新妻明日方舟:构史学主演她是一池春水文昭皇后传邪祟复苏,我为阴世主综漫:作品太刀,雪乃让我别写了玄学直播间,大佬又算命攒功德啦八零软妻人间清醒,首长别茶了!孤爱的哥哥居然是敌国皇亲快穿:战神大人只想找lp贴贴嫡女谋略:妖孽夫君请上门百字日记白日深诱职业魅魔,青梅校花不放过沈氏家族美人祭莫爷养的小公主我用重生埋葬他勾魂的眼神方舟里的后勤官快穿之鼠鼠我呀,太上进了四合院:我何雨柱,国之栋梁斗破:天命反派,云韵哭惨了
品书中文最新小说:海贼王:我是副船长港综:卧底靓坤身边我成最大庄家旗袍扣里的玄机港宗:从军装警开始的护国之路守界者:从修仙归来的豪门少爷HP未蒙救赎hp斯莱特林的送子游戏漫威:卡玛泰姬唯一真神,李宇一拳:劳资无证骑士!不吃牛肉!他的温柔,蓄谋已久龙族:决定成为大姐头超市通古今!囤货养活十万大军鬼灭进修呼吸法,红A是我经验包四合院:兵王归来,开局爽翻了共情系统,宿主她又美又飒风水顾问青莲居剑仙斩神之龙族君念浅浅夫妻穿,抄家后,一路躺赢到边关逆仙纪源旋风少女之心萱快穿:神明重启计划同桌是亲妈中国民间奇闻诡事录惊鸿照影:青楼掌局人废柴丹修:万灵归源图带我逆天改大周深宫:我以月魂重历真相轮回的尽头是你银河烙摊师惊!满级大佬她被逼婚!我的种田KPI通古今穿到荒年:我带着五位相公去逃荒嚯!好家伙,居然穿越成了大海盗八零改嫁绝嗣大佬,随军后成团宠老太太裸辞做保姆家里家外杀疯了人在漫威当奶爸,开局领养布罗利崩坏:被遗忘的她琴酒也要重生!仙踪难觅四合院之我什么都会亿点点综穿:小世界学技能她太上瘾闺蜜说她爸不行,领证后却醉酒行凶重回生产日,拒养白眼狼多宝风云录杀手之王:判官棋魂之有始有终四合院之长途司机在无尽副本中我靠老婆活下来豪门家族之遇见死亡