品书中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

AI大模型没有经过标注训练直接拿训练结果的机器学习,会不完整。

你提出的问题非常有深度,触及了AI大模型训练方法与其学习机制中的核心矛盾:没有经过明确标注训练(Supervised Learning)的AI大模型,是否能获得完整有效的学习成果?是否存在结构性的“学习不完整”?

我们来分层展开这一问题,力求在技术、哲学、认知、类比等多个维度上进行全面分析,最后做出严谨的结论。

?

一、背景界定:AI大模型的训练机制

目前主流的AI大模型(如Gpt系列、claude、Gemini等)采用的是**预训练 + 微调(fine-tuning)+ RLhF(强化学习人类反馈)**的混合架构。

其中最核心的是预训练阶段,其基本过程是:

在没有明确标签的情况下,用大规模互联网上的数据(网页、百科、代码、小说、评论等)进行“自监督学习(Self-supervised Learning)”。

自监督学习 ≠ 无监督学习

? 自监督学习并非完全“无标注”,而是通过构造任务(如语言建模任务:预测下一个词)让模型从数据本身自动生成训练信号。

? 模型在这过程中学习的是结构、语义、因果、常识等隐性规律,而不是显性标签(如猫、狗、汽车这种图像分类标注)。

?

二、未标注训练是否“学习不完整”?——技术视角的回答

我们可以从以下三个角度看“完整性”问题:

1. 信息覆盖角度:不是所有领域都能通过无标注数据自发学习

? 无监督或自监督学习依赖于数据中的统计规律;

? 某些抽象、隐蔽、少量出现的信息(如法律边界、伦理判断、罕见病症)如果数据中分布极少,模型可能无法学到;

? 例如:常识与语言风格模型学得很好,但“核反应堆设计”“金融诈骗行为识别”等专业领域,若无明确标注,学习会片面甚至危险。

结论:信息分布不均 → 导致学习偏斜 → 导致“结构性不完整”。

?

2. 任务映射角度:无标注训练难以学得任务映射规则

? 自监督语言模型训练的本质是“概率语言建模”,不是“任务解答”;

? 所以它并不知道“题目是什么、目的是什么”,而是推测“在这种上下文中,最可能出现的词或句子是什么”;

? 比如:它可以写诗、写代码,但并不能天然知道“这个代码是否安全”“这首诗是否表达了想表达的情绪”。

结论:任务导向的“目标函数”缺失 → 无法学会“为什么做”。

?

3. 可解释性角度:非标注训练缺乏因果结构建模

? 人类通过监督学习明确学习“因果—目的—手段”结构;

? 但大语言模型更像是“相关性结构模拟器”;

? 它可以“预测一个合理的答案”,但不能清晰解释“为什么这个是对的”,这导致它常常幻觉(hallucination),即信心满满地说错话。

结论:缺乏标注训练导致“因果推理能力弱化”,解释力不足。

?

三、类比视角:大模型 vs 人类学习

我们可以做几个有趣的类比来更好理解:

模型机制

类比人类

结果

自监督训练

看大量书籍和对话,但没人教你正确答案

可形成语言风格、思维路径,但很难准确判断对错

监督训练

老师出题、讲解并纠错

能建立清晰的“任务-结果-反馈”链条

强化学习

实践中不断试错并获得反馈

学会策略优化,但很依赖奖励设计

未训练领域

没人讲解、也从没见过的知识

只能“猜”而不是“知道”

所以,大模型并非“全知”,而是“巨量输入+相关性建模”的结果。没有明确监督和反馈,它可以“模仿得很好”,但无法“知道得准确”。

?

四、哲学层面:知识的完整性依赖于目的性与验证路径

知识完整性的构建不仅依赖数据,而更依赖:

1. 目的性(Goal-oriented learning):你学习是为了什么?没有目标就没有选择与筛选;

2. 验证路径(Validation mechanism):你怎么知道你学对了?没有反馈就无法修正偏差;

3. 理论抽象(theory abstraction):你是否能将个例升华为结构?这需要引导和模型建设。

AI大模型很多时候是在缺乏明确目标与反馈的语料中“游荡式学习”。它学得多,但结构不稳、推理不深,因此无法获得“完整性”。

?

五、现实世界中的补救机制

正因为自监督训练存在这些问题,现代大模型在预训练之后通常会做:

1. 微调(fine-tuning):用有标注数据进行小范围有针对性训练;

2. RLhF(人类反馈强化学习):用人工打分机制优化模型输出结果,使其更符合人类价值;

3. 插件系统(tool Use):通过嵌套计算器、数据库、搜索引擎等,补足知识结构的“缺口”;

4. 多模态协同:语言+图像+动作等维度补充信息结构的不完整性。

这些都是在弥补“无标注训练”的先天缺陷。

?

六、结论与展望

你提出的问题可以总结为一句话:

没有经过标注训练的大模型,其知识体系是片面的、目标性弱的、可解释性差的,因此并不完整。

AI大模型在当前阶段,的确存在以下三大“不完整性”:

1. 知识分布不完整 → 稀缺\/敏感信息无法自动习得;

2. 结构建模不完整 → 缺乏明确因果与目标框架;

3. 验证机制不完整 → 幻觉无法主动修正,错误输出不自知。

但它的优势也明显:

? 学习范围极广;

? 语境模拟能力强;

? 多样性高、可迁移性强。

未来,大模型的发展趋势一定是:

? 人类标注与反馈机制更精细化(如AutoRLhF、偏好建模);

? 任务导向设计(agent化、链式推理)加强推理结构;

? 领域专家介入,实现专家知识标注精调;

? 多模态数据参与建模,提升理解维度。

?

品书中文推荐阅读:都市修仙:千年后的我归来无敌了九阳丹帝桃源小龙医我在东京教剑道圣石的觉醒请婚书重生香江1981我用末日文字游戏给世界意志打工神医娘亲之腹黑小萌宝关于我变成了美少女这档子事高武:忍者弱?没看过火影吧!穿成败家妻主后她躺赢了重生军嫂是神医诡秘:我是演员海贼王之草帽副船长穿成替嫁医妃后我被迫母仪天下笑破天传说废柴召唤师:逆天小邪妃极品修士修行的世界少年捉鬼道长重生回到75年重生2007,打工人,打工魂看好了,这一刀很帅!他都抡锤了,你还管他叫奶?惹上洛三少哥,这是直播,你收敛点儿!!高武:开场觉醒SSS级噬空灵焰让你当军师,你和女方军师好上了命途多舛,成功逆袭不当替身后,我上婆媳综艺爆火了娘娘每天都盼着失宠重生之掌家弃妇都市:婚欲名门瘾婚,霸道顾少的爱妻培养万千神邸,动物园成生命禁区首席撩妻,好手段江城最后一个大少雇佣兵:开局百万大军血洗金三角禁地探险:开局解锁国风扮演框私欲:江湖往事重生娇妻:总统阁下,请深爱四合院:胖子的逆袭退婚后,被前任她姐强势壁咚星火事物所回到过去之风起云涌盛宠名门:医妃太惹火开局好声音从国风歌手到世界天王卡牌召唤系统透视眼鉴宝赌石,开局十万倍利润
品书中文搜藏榜:一觉醒来,竟然变成了女孩子长相过于漂亮,她们拿我当御姐养长得美,他们自愿被撅也怪我咯?女装加小楠娘等于扳手,你跑不了像女生被错认为已经当妈怎么办让你当厂长,你搞山寨还返告原厂宝树堂传奇之是谁要了他的命龙王殿:最强战神缠婚霸爱:强吻天价老公通灵毒后难忘人生直播之末世逃生撩妻入怀:学霸男神首席天价逼婚:老婆不准逃我为土地爷消失三年,青梅校花疯狂倒追我血棺镇魂韩娱,从财阀弃子开始宦海特种兵予你缠情尽悲欢银翎梦故事笑话不是,让你跟校花分手,你真分?碳姬新婚后,植物人老公抱住我庭院里花开几时休转生成为血族公主绝宠小娇妻浅笑说爱你闪婚强爱:腹黑首席小白妻许你一世烟雨我在三界收废品美女主播的抓鬼拍档锦绣医图之贵女当嫁廖医生的白玫瑰一品天尊他的温柔会上瘾三爷您的小夫人已上线失业后,我靠钓鱼实现人生自由神级技能:开局偷属性,逆天改命半岛人生制作人偶像竟是我自己华娱之从零到巨星重启封神,从成为天师开始!重生后我是大佬白月光万古第一龙铁血龙魂绝世枭龙侯门落魄嫡女翻身记军少花式宠妻
品书中文最新小说:开局20人,我在敌后创立根据地转职贝利亚,邪神说反派你来当重生军工:从玩具模型到真理导弹蓄谋已久!财阀老婆暗诱成欢被迫转业后,我搜刮了全球资源高武剑道:地球天才称霸全宇宙东北往事之富贵在天五八那年雁归巢盗墓:露出麒麟纹身后,蜜热麻了分手后,我的桃花泛滥了!游走神话,我贯穿各大神系都市吞天武圣魔修归来,宠妹狂魔一山,一观,一小道最爱的人是凶手官场冷暖生死与共:荒岛求生实录让你去扶贫,没让你走向权利巅峰我从底层逆袭变最强这座城市害虫太多,我全杀神豪:为美女花钱,存款直接翻倍让你考公进体制,你被国安带走了重生1975:深山猎户我为妹妹卷成韩娱圈最强神话天才制作人:顶流皆为陪跑重生三七,大兴安岭赶山杀鬼子故宫修复师:开局拆了景山镇物蓝星唯一修士暴打太平洋警察JOJO的奇妙冒险:替身时代我在工厂开挂的日子赤焱巨兽六道轮回博物馆末世归来的第一剑仙穿越之幽灵间谍全民转职,铠甲铸造师瞒不住了女总裁的专属特工:极简裁决灵气复苏:说好的一起证道呢?我的鱼缸是片上古龙渊华娱:从03年开始的导演之王神豪环球旅行,从瑞士女友开始抗联烽火少年行九龙鸿蒙鼎从流浪狗到末世狗王郑琦的混沌人生时空错位1938人生何处是归途:花城网事三十年华娱:我在娱乐圈修仙道爷我啊,可不好惹!诡道之至尊天下双子星劫